# organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# Rong Wan,<sup>a</sup>\* Feng Wu,<sup>a</sup> Feng Han,<sup>a</sup> Lin Cao<sup>b</sup> and Jin-Tang Wang<sup>a</sup>

<sup>a</sup>Department of Applied Chemistry, College of Science, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China, and <sup>b</sup>Department of Pharmaceutical Analysis, China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing 210009, People's Republic of China

Correspondence e-mail: wufeng197910@hotmail.com

#### **Key indicators**

Single-crystal X-ray study T = 298 K Mean  $\sigma$ (C–C) = 0.004 Å R factor = 0.052 wR factor = 0.162 Data-to-parameter ratio = 14.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

# *N*-[5-(4-Methoxyphenyl)-1,3,4-thiadiazol-2-yl]-3,5-dimethylbenzamide

The title compound,  $C_{18}H_{17}N_3O_2S$ , was synthesized by reaction of [5-(4-methoxyphenyl)-1,3,4-thiadiazol-2-yl]amine with 3,5-dimethylbenzoic acid. In the crystal structure, intermolecular N-H···N hydrogen bonds link the molecules into centrosymmetric dimers.

#### Comment

Thiadiazole derivatives containing the benzamide unit are of interest because of their chemical and pharmaceutical properties. Some derivatives have fungicidal properties, exhibiting herbicidal (Chen *et al.*, 2000; Kidwai *et al.*, 2000; Vicentini *et al.*, 1998) or insecticidal activity (Arun *et al.*, 1999; Wasfy *et al.*, 1996).



The molecular structure of (I) is shown in Fig. 1. In the crystal structure, molecules are linked into centrosymmetric dimers through  $N-H\cdots N$  hydrogen bonds (Table 1 and Fig. 2).

## **Experimental**

A solution of [5-(4-methoxyphenyl)-1,3,4-thiadiazol-2-yl]amine (5 mmol) in pyridine (50 ml) was cooled to 273 K and 3,5-dimethylbenzoic acid (5 mmol) was added dropwise over a period of 30 min. The mixture was stirred at 273 K for 1 h, then warmed to room temperature and stirred for a further 1 h. The pyridine was then



#### Figure 1

© 2006 International Union of Crystallography All rights reserved The molecular structure of (I), showing displacement ellipsoids drawn at the 50% probability level for non-H atoms.

Received 17 August 2006

Accepted 7 September 2006

removed by evaporation and the solid was recrystallized from ethanol to provide compound (I) (yield 81%; m.p. 520-524 K). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an acetone solution.

V = 835.9 (3) Å<sup>3</sup>

 $D_x = 1.349 \text{ Mg m}^{-3}$ 

Mo  $K\alpha$  radiation

Block, colourless

 $0.30\,\times\,0.10\,\times\,0.10$  mm

3 standard reflections

 $(\Delta/\sigma)_{\rm max} < 0.001$ 

 $\Delta \rho_{\rm max} = 0.24 \text{ e} \text{ Å}^{-3}$ 

 $\Delta \rho_{\rm min} = -0.25 \text{ e} \text{ Å}^{-3}$ 

every 200 reflections

intensity decay: none

H-atom parameters constrained  $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.1P)^{2}]$ where  $P = (F_{o}^{2} + 2F_{c}^{2})/3$ 

3215 independent reflections

2297 reflections with  $I > 2\sigma(I)$ 

 $\mu = 0.21 \text{ mm}^{-1}$ 

T = 298 (2) K

 $R_{\rm int} = 0.022$ 

 $\theta_{\rm max} = 26.0^{\circ}$ 

Z = 2

#### Crystal data

C18H17N3O2S  $M_r = 339.41$ Triclinic, P1 a = 7.7105 (14) Åb = 8.3328 (18) Å c = 14.454 (2) Å  $\alpha = 74.44(3)^{\circ}$  $\beta = 83.07 \ (3)^{\circ}$  $\gamma = 69.18(3)$ 

#### Data collection

Enraf-Nonius CAD-4 diffractometer  $\omega/2\theta$  scans Absorption correction:  $\psi$  scan (North et al., 1968)  $T_{\rm min}=0.940,\ T_{\rm max}=0.979$ 3460 measured reflections

## Refinement

Refinement on  $F^2$  $R[F^2 > 2\sigma(F^2)] = 0.052$  $wR(F^2) = 0.162$ S=1.003215 reflections 217 parameters

### Table 1

Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$      | D-H             | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - H \cdots A$ |
|-----------------------|-----------------|-------------------------|--------------|------------------|
| $N3-H3A\cdots N2^{i}$ | 0.86            | 2.18                    | 2.996 (3)    | 158              |
| Symmetry code: (i) -  | r + 1 - v - z + | - 1                     |              |                  |

etry code: (i) -x + 1, -y, -z + 1

All H atoms were placed geometrically, with C-H = 0.93-0.97 Å and N-H = 0.86 Å, and allowed to ride during subsequent refinement, with  $U_{iso}(H) = 1.2U_{eq}(C,N)$  or  $1.5U_{eq}(methyl C)$ .

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97



#### Figure 2

The centrosymmetric dimer in (I), linked by N-H···N hydrogen bonds (dashed lines).

(Sheldrick, 1997); molecular graphics: SHELXTL (Siemens, 1996); software used to prepare material for publication: SHELXL97.

### References

Arun, K. P., Nag, V. L. & Panda, C. S. (1999). Indian J. Chem. Sect. B, 38, 998-1001.

Chen, H. S., Li, Z. M. & Han, Y. F. (2000). J. Agric. Food. Chem. 48, 5312-5315. Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.

Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Kidwai, M., Negi, N. & Misra, P. (2000). J. Indian Chem. Soc. 77, 46-48.

North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.

- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Siemens (1996). SHELXTL. Version 5.06. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Vicentini, C. B., Manfrini, M., Veronese, A. C. & Guarneri, M. (1998). J. Heterocycl. Chem. 35, 29-36.
- Wasfy, A. A., Nassar, S. A. & Eissa, A. M. (1996). Indian J. Chem. Sect. B, 35, 1218-1220.